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Extension of Goldstein’s series for the 
Oseen drag of a sphere 
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Goldstein’s expansion of the Oseen drag of a sphere in powers of Reynolds number 
is extended to 24 terms by computer. The convergence is found to be limited by 
a simple pole at  R = - 4.18172. The series is recast using an Euler transformation 
and other devices to yield accurate results for large R. 

1. Introduction 

Oseen linearization of the Navier-Stokes equations, and gave the expansion 
In 1929 Goldstein published an analysis of the drag of a sphere according to the 

122,519 
550,502,400 

Here R = ZUa/vis the Reynolds number based upon diameter. We have corrected 
the last denominator (from 560,742,400) according to Shanks (1955). The first 
term was given by Stokes in 1851, and the second by Owen in 1910. Goldstein 
remarks that his approximation is useful only up to R = 2. 

Later Goldstein (1938) pointed out that the corresponding expansion for the 
full Navier-Stokes equations will differ from (1.1) after the first two terms. 
Proudman & Pearson (1957) showed that it has a more complicated structure 
involving logarithms as well as powers of R, beginning with R21n R. This might 
suggest that extension of Goldstein’s series to higher powers of R would be 
profitless. However, it is likely that the Oseen model will continue to provide 
insight and guidance for the Navier-Stokes equations, especially for separated 
flows. Questions of the radius of convergence, the analytical structure of the 
function represented by the series, and effective means of recasting it to improve 
accuracy-all of which arise also in the Navier-Stokes problem-can be clarified 
by adding terms to Goldstein’s series. 

Hand calculation of more than one or two additional coefficients would seem 
to be humanly impossible; but the routine operations involved can now be 
delegated to  a computer. Machine extension of perturbation series is less developed 
in fluid mechanics than in such fields as celestial mechanics (see, for example, 
Deprit & Rom 1967). Coupled with the application of transformations to improve 
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the accuracy of the resulting series, this new role for the computer provides a 
promising technique for attacking a variety of problems in fluid mechanics, of 
which the present analysis provides a simple example. 

2. Machine solution 
A computer program was written in the FORTRAN IV language to calculate 

any given number of the coefficients in Goldstein’s series (1.1). It consists of some 
300 statements and (in Goldstein’s notation) computes in succession 

(1) the coefficients in the sums (36) and (37) for xnZ and $n from the second of 
Goldstein’s equations (32), 

(2) the coefficients in x; from the first of (32), 
(3) the coefficients in Yn,m from (40) and (23), 
(4) the coefficients in TA,m from (39), 
(5) the coefficients in Xn,m from (47) and (51), 
(6) the coefficients of the expansion of As,m in powers of 6 from (46), 
(7) the coefficients of the expansion of I?, in powers of t from (1 8), 
(8) the coefficients of the expansion of k, in powers o f t  from (57). 

The actual program involves various subtleties not suggested by this bare 
outline. 

An effort to calculate the coefficients as rational numbers using integer 
arithmetic had to be abandoned in favour of floating-point arithmetic because 
the maximum allowed integer is soon exceeded. The results are consequently 
subject to accumulated round-off error. The accuracy was controlled only by 
comparing single- and double-precision calculations. 

The computations were carried out on the Stanford IBM 360/67 computer. 
The storage of the machine was exhausted with the calculation of 24 terms of the 
series, and this number was regarded as sufficient, so that no effort was made to 
optimize or augment the storage. The double-precision calculation of 24 terms 
required just 1 min. 

The direct product of Goldstein’s analysis is a series in powers of his E0 = Ua/2v, 
one-quarter of the Reynolds number based on diameter, which is a parameter 
that appears naturally in Oseen theory. We choose to retain that natural form, 
because the coefficients then all have magnitude of order unity. Thus we expand - 

the drag coefficient as D 12 n 

npU2a2 R ,,=o 

Table 1 gives the first 24 coefficients c,, of which the first five agree with Gold- 
stein’s values and the sixth with Shanks’s correction. Comparison with the 
single-precision calculation suggests that these are all correct to within one unit 
in the eighth figure. 

The coefficients alternate regularly in sign, which permits the accuracy of a 
b i t e  sum to be assessed. Our 24 terms yield four significant figures (C, = 5.929) 
at R = 3, but only one figure (CD = 5) at R = 4 and none at R = 5. 

The alternation of signs indicates that the nearest singularity in the complex 
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plane of Reynolds number lies on the negative real axis. [This refutes the implica- 
tion of Montroll (1969) that convergence is limited by the critical Reynolds 
number R, M 5 x 105.1 Examining the original six coefficients, the writer pre- 
viously suggested (Van Dyke 1964a, p. 205-210) a singularity at R = - 4. To 
improve this estimate we exploit not only our 18 additional coefficients but also 
a graphical procedure due to Domb & Sykes (1957). In helping to estimate the 
radius of convergence, their plot also predicts thenature of the nearest singularity. 

The radius of convergence (in terms of aR) is, according to D'Alembert's ratio 
test, the limit as n becomes infinite of cn-l/cn. The inverse ratios cn/cn-l are plotted 
versus 1/n in figure 1. This is the Domb-Sykes plot, which (in addition to bringing 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Cn 

1~0000 0000 
0.7500 0000 

- 0.2375 0000 
0.2218 7500 

0.2278 9993 

0.2232 5498 

0.2073 5255 

0.1891 9541 

- 0.2245 4613 

- 0.2275 7591 

- 0.2160 6031 

-0.1981 8934 

drI 
1~0000 0000 

- 0.2159 2879 
- 0.2595 6857 
- 0.0060 6090 
- 0.0207 6791 
- 0.0191 0239 
- 0.0135 6963 
- 0.0090 7563 
- 0.0065 0353 
- 0.0052 7441 
- 0'0046 5395 
- 0.0041 8897 

n 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Cn 

- 0.1806 4216 
0.1725 8708 

0.1577 9401 

0.1443 9312 

0.1321 3363 

0.1209 0337 

0.1106 2351 

- 0.1649 9175 

- 0.1509 4019 

- 0.1381 2931 

- 0.1263 9492 

- 0.1156 4943 

dn 

- 0.0037 1456 
- 0.0032 2957 
- 0.0027 8333 
- 0.0024 1401 
- 0.0021 3118 
- 0.0019 2188 
- 0.0017 6358 
- 0.0016 3473 
- 0.0015 2016 
- 0.0014 1204 
- 0.0013 0829 
- 0.0012 1005 

TABLE 1. Coefficients in Goldstein's series (2.1) and its Euler transform (4.1) 

the extrapolation to the origin) has the advantage that for certain common 
singular functions it gives a linear variation: if 

then (2 .2b )  

If the plot tends to become straight, its limiting slope accordingly indicates the 
nature of the nearest singularity. Figure 1 shows rapidly damped oscillations 
about a limiting horizontal line. Thus the nearest singularity is a simple pole 
(a = -1 ) .  

The inset in figure 1 shows that maxima and minima appear in the plot 
regularly at every sixth coefficient; and the amplitude decreases by a factor of 
about 30 in each half cycle. Considering these facts, we estimate the intercept 
at  - 0.956545. Thus Goldstein's series converges for Reynolds numbers less than 

R, = 4.18172 .... (2.3) 

This has not been recognized as a known transcendental. (It is close to 

but not close enough.) 
4 ~ 1 3  = 4.18879 ..., 
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FIGURE 1. Domb-Sykes plot for Goldstein's series. 

3. Analytic continuation 
Although the series has a modest radius of convergence, its first 24 terms 

contain a great deal of information about the drag coefficient for any Reynolds 
number, which only awaits unveiling. (Of course this assertion rests on our 
expectation that a unifying physical fabric underlies the expansion.) 

The pole on the negative axis of R spoils the utility of the series on most of the 
positive real axis, which is doubtless free of singularities. The series can therefore 
be improved in principle by analytic continuation into the right half-plane. 

Euler transformation 

One practical method of analytic continuation when only a finite number of 
terms are known, and the radius of convergence can be estimated, is to banish 
the offending singularity to infinity with a linear fractional transformation. Thus 
we make an Euler transformation, recasting the series in powers of the variable 
RI(R, + R)  instead of R. This gives 

Table 1 gives the first 24 coefficients dlL. They diminish smoothly in magnitude 
beyond the fourth. [We could have extracted a power of R before recasting, as 
was done for the skin friction on a parabola (Van Dyke 1964b). In not doing so we 
have tacitly exploited our knowledge that C, is finite at  R = c0.3 
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All coeficients but the first are negative, so that the series now yields only an 
upper bound for the drag, and the accuracy is not certain. However, the values 
listed in the second column of table 2 are believed, on the basis of examination of 
successive terms, to be accurate to within one unit in the last figure given (and 
this is borne out by more accurate results discussed later). R = 7.605 is the value 
at which, according to the numerical solutions of Bourot (1969), a closed recir- 
culating ring eddy appears at the rear of the sphere. 

Euler trans- 
Euler transform form plus 

Euler Rational plus rational oompletion 
R transform (3.1) fraotions (3.4) fractions of series 

4 
7,605 

10 
20 
30 
40 
50 

100 
400 
co 

4.86993 
3.30639 
2.86760 
2.122 
1.847 
1.70 
1.61 
1.4 
1.2 
1.1 

4.86993 
3.30639 
2.86760 
2.12188 
1.8460 
1.697 
1.602 
1.4 
1.2 
1.1 

4.86993 
3.30639 
2.86760 
2.12188 
1.84804 
1-6975 
1.6029 
1.393 
1.20 
1.1 

TABLE 2. Drag coeffioient from various schemes 
for improving Goldstein’s series 

4.86993 
3.30639 
2.86760 
2-12187 
1.84603 
1.6974 
1.6028 
1.3923 
1.188 
1.06 

o.6L+-- 0 0  0 0.05 0.10 0.15 

I/% 

o.6L+-- 0 0  0 0.05 0.10 0.15 

I/% 

FIGURE 2. End of Domb-Sykes plot for Euler transform of Goldstein’s series: 
t [ I -  R/(R, + R)P. _ _ _ _ _  

Because the signs are unchanging, the nearest singularity now lies on the 
positive real axis. Figure 2 shows the end of the Domb-Sykes plot. The damped 
oscillation that was invisible in figure 1 has been enormously magnified, and 
speeded up to an extremum every fourth coefficient. Nevertheless, it seems clear 
that the intercept is unity. The radius of convergence is therefore unity for 
R/(Ro + R),  and hence infinite for R itself. The limiting slope surely corresponds 
to some positive a in (2.2), which means that the series converges at R = 03. 

The convergence is slow, however, the last five partial sums giving 

C, = ... 1.1929, 1.1886, 1.1845, 1.1808, 1.1773 at R = 03. (3.2) 
24 F L U  44 
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Applying the non-linear transformation of Shanks (1955) t o  the last three values 
(which amounts to extrapolating on the aasumption that they are part of a geo- 
metric series) yields 1.13. Comparison at  lower R suggests that this artifice gives 
again an upper bound, and we are able to retain with confidence only two signifi- 
cant figures in table 2. Thus we are far from being able to reproduce the value 
1.06 calculated numerically by Stewartson (1956). [In unpublished work J.-M. 
Bourot has refined this value to C, = 1.05825 using 28 terms of Stewartson’s 
expansion.] 

The oscillation complicates the estimation of the limiting slope. However, 
Stewartson has pointed out to the writer that Roberts’s (1967) analysis of the 
analogous problem of the Hartmann layer in a circular pipe implies that here 

C, - C,,+KR-#+ ... as R- tco .  (3.3) 

The curve in figure 2 is seen to twine closely about the straight line corresponding 
to this behaviour. 

Rational fractions 

The Euler transformation does not take advantage of our knowledge of the 
nature of the nearest singularity. A method that does is to multiply out that 
singularity, and recast the remainder as a rational fraction. Rational fractions 
(or Pad6 approximants) possess remarkable properties of analytical continuation 
that, although not fully understood, prove valuable in many physical applications 
(Baker 1965). 

Here, taking advantage of the extra information that the drag coefficient is 
finite at  infinite Reynolds number, we choose to form (from an odd number of 
terms of the series) rational fractions whose numerators are of one degree higher 
than the denominators. The result will then have a finite limit when the pole is 
reintroduced, For example, three terms give 

In higher approximations, this procedure is conveniently carried out on the 
computer using the ‘epsilon algorithm’ of W p i  (1956). It is inapplicable at  
R = co, however, and must be replaced by a procedure involving determinants. 

In  contrast to the smooth monotonic variation of successive Euler transforms, 
rational fractions oscillate in an erratic and unpredictable way (as they do in 
other physical problems), Nevertheless, the magnitude of the oscillations 
decreases so rapidly with the number of terms that much greater accuracy is 
achieved than with the Euler transformation. Thus in the third column of table 2 
we have been able to add at least one more secure significant figure for R up to 50. 

Combined procedure 

The idea suggests itself of combining the smoothness of the Euler transformation 
with the convergence acceleration of rational fractions. Thus from the even 
partial sums of the Euler transform (3.1) we have formed rational fractions with 
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numerator and denominator of equal degree [the first being just two terms of 
(3.1) itself]. It is clear from internal evidence that the accuracy is greatly 
increased. Thus in the fourth column of table 2 we have been able to add at least 
one more significant figure at each Reynolds number except R = co. 

Our values now agree completely with the six-figure numerical results of 
Bourot (1969) at R = 4, 10, 20, and 30, and with his revised (unpublished) value 
at  R = 7.605, and agree to five figures with his unpublished values C;, = 1.69742 
at R = 40 and 1.60279 at R = 50. 

Completion of the series 

Despite their effectiveness, rational fractions are suspect because they must be 
applied blindly. A more logical way of refining the result of the Euler transforma- 
tion is to complete the series as suggested by (3.3) and figure 2. Thus the remainder 
for the sum in (3.1) is approximated by that for the expansion of 

where Cn is chosen to make the nth terms agree. The consistency of the results for 
various < 23 suggests that this device still further increases the acouracy, 
giving the values shown in the last column of table 2. In  particular, this has at 
last permitted us to  reproduce Stewartson’s value of 1-06 at R = co. 

4. Discussion 
Whereas the Oseen drag is only marginally described by the original six terms 

of Goldstein’s series, our extension to 24 terms provides il nearly complete 
characterization of the function in the entire complex plane of Reynolds number. 
Thus we have found the location and nature of the singularities, and by judicious 
recasting have been able to extract five-figure accuracy at  Reynolds numbers up 
to 25 times as great as the original radius of convergence, and three-figure 
accuracy even at R = 00. 

In the analogous expansion for the Navier-Stokes equations, the calculation of 
additional terms unfortunately cannot be delegated to the computer. Chester & 
Breach (1969) have, by detailed analysis, completed the third approximation 
and found part of the fourth. Comparing with the experiments of Maxworthy 
(1965), they conclude that their result is useful only up to R = 0.5. Improvement 
by recasting would require more sophisticated schemes than those used here, 
which are appropriate only for power series. Proudman (1969) has proposed one 
method that yields promising results. 

This work was carried out under Air Force Office of Scientific Research 
Contract AF 44620-69-C-0036. The writer is indebted to Keith Stewartson for 
valuable criticism and for suggesting equation (3.3) and the idea of completing 
the series, and to J.-M. Bourot for making available the results of his unpublished 
computations. 

24-2 
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